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a b s t r a c t

The methods for simulating surface tension with smoothed particle hydrodynamics (SPH)
method in two dimensions and three dimensions are developed. In 2D surface tension
model, the SPH particle on the boundary in 2D is detected dynamically according to
the algorithm developed by Dilts [G.A. Dilts, Moving least-squares particle hydrodynam-
ics II: conservation and boundaries, International Journal for Numerical Methods in Engi-
neering 48 (2000) 1503–1524]. The boundary curve in 2D is reconstructed locally with
Lagrangian interpolation polynomial. In 3D surface tension model, the SPH particle on
the boundary in 3D is detected dynamically according to the algorithm developed by
Haque and Dilts [A. Haque, G.A. Dilts, Three-dimensional boundary detection for particle
methods, Journal of Computational Physics 226 (2007) 1710–1730]. The boundary surface
in 3D is reconstructed locally with moving least squares (MLS) method. By transforming
the coordinate system, it is guaranteed that the interface function is one-valued in the
local coordinate system. The normal vector and curvature of the boundary surface are
calculated according to the reconstructed boundary surface and then surface tension
force can be calculated. Surface tension force acts only on the boundary particle. Density
correction is applied to the boundary particle in order to remove the boundary inconsis-
tency. The surface tension models in 2D and 3D have been applied to benchmark tests for
surface tension. The ability of the current method applying to the simulation of surface
tension in 2D and 3D is proved.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Surface tension has a significant influence on the fluid flow with free surface or multi-phase flow with a sharp interface,
such as a breaking dam, capillarity, binary coalescence. Surface tension force acts on the interface and the interface tends to
become as small as possible [1]. Applications in natural phenomena and industrial processes, such as water beading on a leaf,
water dripping from a tap, formation of soap bubbles, ink-jet printing, thermal spray coating involves with effects of surface
tension at the liquid–liquid interface.

Many meshed methods have been applied to investigate the fluid flow with surface tension. Brackbill et al. [2] presented
the continuum surface force (CSF) method to model the surface tension. In general, the CSF model is applicable to fluid flow
dominated by interfacial surface tension. It has been applied to investigate incompressible fluid flow in low gravity environ-
ments, capillarity, and droplet dynamics. Sussman et al. [3] developed a level set approach for incompressible two phase flow
with surface tension. The new treatment of level set method can be applied to the problem with large density and viscosity
. All rights reserved.
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ratio. And the motion of air bubbles in water and falling water drops in air are investigated in the work. Chang et al. [4]
derived a level set formulation for incompressible, immiscible Navier–Stokes equations separated by a free surface. These
methods are robust and efficient and are capable of computing interface singularities such as merging and reconnection.
Bussman et al. [5,6] developed a three-dimensional volume tracking model of droplet impact. Surface tension is modeled
as a volume force acting on fluid near the free surface. The fingering and splashing of a droplet impacting a solid surface
is investigated numerically.

Meshless methods such as SPH method [7–9] has been applied to simulate the fluid flow with free surface. Nugent
and Posch [10] first developed a SPH model for surface tension. The cohesive pressure of the van der Waals (vdW) model
gives rise to an attractive, central force between the particles with an interaction range. The oscillation of deformed drop
is studied with the SPH model. Meleán et al. [11,12] applied the vdW model to simulate the oscillation of the deformed
drop without tensile instability. Later, it is extended to the numerical investigation of head-on and off-center binary col-
lision. And López and Sigalotti [13] used the vdW model to investigate the oscillation of elliptic drop. Colagrossi and
Landrini [14] present a SPH formulation for two-dimensional interfacial flows. The formulation remains stable for the
low density ratios. Tartakovsky and Meakin [15,16] presented a surface tension model to simulate unsaturated flow
through fracture junctions, the classical two-dimensional Rayleigh–Taylor instability and three-dimensional miscible flow
in fracture apertures with complex geometries. All the above methods give very good results. However, the surface ten-
sion force is not set explicitly. And there are artificial coefficients in these methods and the choice of the artificial coef-
ficient is arbitrary. The surface tension force has to be calibrated by using the Laplace’s formulation. And also the initial
temperature has to be chosen specifically for the vdW model. It undermines the application of the vdW model to free
surface problem related to heat transfer. Morris [17] developed the SPH formulation for the CSF model. The interface is
tracked implicitly by simulating the advection of the color function. The method suffers from difficulty of accurate rep-
resentation of interface curvature. Hu and Adams [18–20] presented an CSF model for the SPH method and applied it
into the incompressible multi-phase flow. The incompressible multi-phase SPH method works well and gives excellent
results in the simulation of droplet oscillation, contact angle, droplet deformation in shear flow, Rayleigh–Taylor insta-
bility. The method has high computational efficiency and has been extended to the simulation of flows with high density
ratio.

In this paper, the methods for simulating surface tension with SPH method in two dimensions and three dimensions are
developed. In 2D surface tension model, the boundary particles are detected dynamically by using the algorithm developed
by Dilts [21] and the interface is reconstructed locally by using Lagrangian interpolation polynomial. In 3D surface tension
model, the boundary particles are tracked explicitly by using the algorithm developed by Haque and Dilts [22] and the
boundary surface is reconstructed locally by using MLS. The curvature and normal vector are calculated according to the
reconstructed interface and then surface tension force can be obtained. Surface tension force acts only on the boundary par-
ticles. In order to remove the boundary inconsistency, density correction is applied on the boundary particles. The details of
the method are given in the next sections.

2. Numerical model

SPH is a meshless Lagrangian method for fluid dynamics simulation. As a particle method, SPH uses a set of particles to
represent fluid flow [8]. And the approximate numerical solutions of the equations of fluid dynamics are calculated on these
particles. Mathematically, the particles are only the interpolation points. SPH is a popular and attractive method in the field
of computational fluid dynamics in the past twenty years. Although SPH is still in the state of development, improvements of
the stability, consistence, and convergence for the SPH have been obtained because of the continuous endeavor of many sci-
ence researchers. The standard SPH will be given in the following.

The mass density qi of particle at position ~xi can be evaluated by using the summation density:
qið~xÞ ¼
XN

j¼1

mjWij ð1Þ
where Wij ¼Wð~xij;hÞ is the smoothing function, and~xij ¼~xi �~xj; mi denotes the mass of particle i, h represents the smooth-
ing length and~xi is the position of particle i. By integrating Eq. (1), we obtain the total mass of the system which is equal to
the summation of all the particles. The summation density has the property of mass conservation. To reduce the particle defi-
ciency on the boundary, the summation density is normalized on the boundary as below [23]
qið~xÞ ¼
PN

j¼1mjWijPN
j¼1

mj

qj

� �
Wij

: ð2Þ
Applying the SPH particle approximation to the Lagrangian form of Navier–Stokes equations, a symmetric form is
obtained to preserve variational consistency. The momentum equation can be written as follows:
D~v i

Dt
¼ �

XN

j¼1

mj
pi

q2
i

þ
pj

q2
j

 !
riWij þ

XN

j¼1

mj
si

q2
i

þ sj

q2
j

 !
� riWij þ

1
qi

~f : ð3Þ
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The RHS of Eq. (3) consists of the pressure, viscous force and surface tension force. XSPH [24] is used in the calculation and
the velocity is revised by
d~xi

dt
¼ ~v i � e

X
j

mj

qj

~v ijWij; ð4Þ
where ~v ij ¼ ~v i �~v j and e is a constant ranging from 0 to 1. XSPH makes the SPH particles moving more orderly. The pressure
is calculated according to the equation of the state as below
p ¼ c2ðq� q0Þ; ð5Þ
where q0 is the reference density of fluid and c is the speed of sound. The particle approximation for the viscous stress tensor
s is [25]
si ¼ �
XN

j¼1

mj

qj
li~v ijriWij �

XN

j¼1

mj

qj
liðriWijÞ~v ij þ

2
3

XN

j¼1

mj

qj
li~v ij � riWij

 !
I: ð6Þ
The surface tension force is calculated as below [2,17]
~f ¼ rj~nde; ð7Þ
where the r is the coefficient of surface tension, j is the curvature of surface, ~n is the normal vector of surface and de is the
surface delta function. de is simply set to a constant 1/e on the interface. And e takes the value of the particle spacing. The
surface gradient term is not considered here, since the coefficient of surface tension is assumed to be constant.

In order to obtain surface tension force acting on the boundary particle, the SPH particles on the interface are detected
dynamically and the interface curve is reconstructed locally in the transformed coordinate by using Lagrangian interpolation
method in 2D and by MSL in 3D, respectively. Then the curvature and normal vector of the interface are obtained according
to the reconstructed interface. The detailed algorithms are given in the following.

2.1. 2D Surface tension model

2.1.1. Boundary particle detection in 2D
Based on the technique developed by Dilts [21], the boundary particle in 2D is detected by scanning the jh-diameter (jh

is the dimension of the support domain) circle around an SPH particle. If the circle of an SPH particle is not completely cov-
ered by the circles of its neighbors, the SPH particle is a boundary particle. Otherwise, it is an inner particle. In the current
algorithm, the arc checking method is applied to scan the jh-diameter circle coverage. The range of the circle is set to be
[0,2p). The covered arcs are represented by a set of angle interval [a1,a2]. The circle of particle i is covered only if the fol-
lowing condition is satisfied
[

j

½a1;a2� ¼ ½0;2pÞ; ð8Þ
where j is the particle index of neighbors of particle i. The details for the boundary particle detection in 2D can be found in
Ref. [21].

2.1.2. Reconstruction of the interface curve in 2D
The interface curve is reconstructed on the boundary particle. Before the reconstruction of the interface curve, the coor-

dinate system is transformed to local coordinate system as shown in Fig. 1. The advantage of transformation of the coordi-
nate system is that the interface curve is guaranteed to be one-valued in the local coordinate system. For boundary particle i,
the local coordinate origin O0 is the average point of the neighbors of the boundary particle i. The coordinate of point O0 are
given as the following:
xO0 ¼
X

j

xj

,
Ni; ð9Þ

yO0 ¼
X

j

yj

,
Ni; ð10Þ
where j is the particle index of neighbors of boundary particle i and Ni is total number of neighbors of boundary particle i. The
direction of the y0 axis is the same as that of the straight line from the local coordinate origin O0 to boundary particle i. The x0

axis is perpendicular to the y0 axis. The rotation angle a of the local coordinate system, i.e. the angle between x axis in the
original coordinate system and x0 axis in the local coordinate system, is given by
a ¼
2p� cos�1ðry=rÞ if rx > 0;
cos�1ðry=rÞ if rx 6 0;

(
ð11Þ
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Fig. 1. Transformation of the coordinate system based on the average point O0 of the neighbors of boundary particle i in 2D.
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where
rx ¼ xi � xO0 ; ð12Þ
ry ¼ yi � yO0 : ð13Þ
xi and yi is the coordinate of particle i in the x and y direction, respectively. The relationship between the local coordinate and
the original coordinate is given by
x0 ¼ x cos aþ y sin a; ð14Þ

y0 ¼ �x sinaþ y cos a: ð15Þ
The interface curve is reconstructed locally on boundary particle i and its neighbors. It is guaranteed that the interface
reconstructed locally is one-valued in the local coordinate system. The Lagrangian interpolation polynomial is used to fit
the interface curve in the local coordinate system. The Lagrangian interpolation polynomial is given by
PðxÞ ¼
X

j

PjðxÞ; ð16Þ
where
PjðxÞ ¼ yj

Y
k–j

ðx� xkÞ
ðxj � xkÞ

: ð17Þ
j is particle index including boundary particle i and its neighbors on the boundary. For simplicity, the prime of the local coor-
dinate is neglected. The coordinate in the Lagrangian interpolation polynomial and its derivative is in the local coordinate
system.

2.1.3. Curvature and normal vector of the interface in 2D
The curvature and normal vector of the interface are calculated from the reconstructed curve. The curvature j is given

by
j ¼ jP00ðxÞj
½1þ P02ðxÞ�3=2 ; ð18Þ
where P0(x) and P00(x) are the first and second derivative of interface function P(x), respectively.
Since the surface tension force is towards the fluid for convex interface and outwards the fluid for concave interface, the

direction of surface tension force should be specified according to the second derivative of the interface curve. The direction
of normal vector of the interface is set to be the same as the direction of surface tension force. The normal vector of the inter-
face ~n0 in the local coordinate system (as shown in Fig. 2) is taken as
~n0 ¼ hP0ðxÞ;�1i if P00ðxÞ < 0;
h�P0ðxÞ;1i if P00ðxÞ > 0:

�
ð19Þ
The normal vector of the interface calculated by Eq. (19) should be transformed to normal vector in the original coordinate
system by rotating. Finally the normal vector of the interface ~n is given as
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~n ¼ hP0ðxÞ cos aþ sina; P0ðxÞ sin a� cos ai if P00ðxÞ < 0;
h�P0ðxÞ cos a� sin a;�P0ðxÞ sinaþ cos ai if P00ðxÞ > 0;

�
ð20Þ
where a is the rotation angle from the original coordinate system to the local coordinate system. The curvature will not
change with the transformation of the coordinate system.

The curvature and normal vector of the interface are given by Eqs. (18) and (20), respectively. The surface tension force
can be calculated by Eq. (7).

2.2. 3D Surface tension model

2.2.1. Boundary particle detection in 3D
Based on the method developed by Haque and Dilts [22], the SPH particles on the boundary surface in 3D are detected

dynamically by checking the coverage of the sphere of radius di (the dimension of the support domain) centered at particle
i. The algorithm of the coverage of the sphere is given as below. The sphere with the radius of the dimension of the support
domain is created for each SPH particle. The surface circles on the candidate boundary sphere are obtained by the inter-
actions with the neighbor spheres. The coverage of all the surface circles on the boundary sphere is checked by using the
two-dimensional algorithm developed by Dilts [21]. If any of the surface circles is not completely covered, the candidate
SPH particle is on the boundary. Otherwise, the SPH particle is an inner particle. The details of the 3D boundary detection
method can be found in Ref. [22].

2.2.2. Reconstruction of the interface in 3D
The boundary particles in 3D are detected, and then the boundary surface can be reconstructed based on MLS. Before the

reconstruction of the boundary surface, the coordinate system is transformed to local coordinate system as shown in Fig. 2.
The advantage of the transformation of the coordinate system is that the boundary surface is guaranteed to be one-valued in
the local coordinate system. For boundary particle i, the local coordinate origin O0 is the average point of the neighbors of
boundary particle i. The coordinate of point O0 are given as the following:
xO0 ¼
X

j

xj

,
Ni; ð21Þ

yO0 ¼
X

j

yj

,
Ni; ð22Þ

zO0 ¼
X

j

zj

,
Ni; ð23Þ
where j is the particle index of neighbors of boundary particle i and Ni is total number of the neighbors of boundary particle i.
The direction of the z0 axis is that of radial from the local coordinate origin O0 to boundary particle i. The x0y0 plane is per-
pendicular to z0 axis. The directions of x0, y0 and the z0 axis is given by
~̂zij ¼
xi � xO0 ; yi � yO0 ; zi � zO0h i

xi � xO0ð Þ2 þ yi � yO0ð Þ2 þ zi � zO0ð Þ2
h i1

2
; ð24Þ
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~̂xij ¼

~̂x�~̂zij

~̂x�~̂zijk k if ~̂y�~̂zij ¼ 0;

~̂y�~̂zij

~̂y�~̂zijk k if ~̂y�~̂zij–0;

8>><
>>: ð25Þ

~̂yij ¼
~̂zij � ~̂xij

~̂zij � ~̂xij

��� ��� ; ð26Þ
where ~̂xij; ~̂yij, and ~̂zij are the unit vectors in x, y, and z axis of the local coordinate system, respectively. ~̂x and ~̂y are the unit
vectors in the x and y axis of the original coordinate system, respectively. The relationship between the local coordinate
(x0,y0,z0) and the original coordinate (x,y,z) is given by
x0 ¼ hx; y; zi � ~̂xij; ð27Þ

y0 ¼ hx; y; zi � ~̂yij; ð28Þ

z0 ¼ hx; y; zi �~̂zij: ð29Þ
In the transformed coordinate system, the boundary surface is reconstructed by using the MLS. The MLS is a useful meth-
od to reconstruct the 3D surface from a set of points. Since the second derivatives of the surface function should be given in
the calculation, the quadratic basis is used in the MLS. The quadratic basis is given as below
pT ¼ ½1; x; y; x2; xy; y2�: ð30Þ
According to the definition from Lancaster and Salkauskas [26], the surface function (the coordinate in the z direction of
the particle on the boundary surface) can be approximated as
zhð~xÞ ¼
Xm

i¼1

pi
�~x
� �

aið~xÞ � pT �~x
� �
� að~xÞ; ð31Þ
where m is the number of terms in the basis and
að~xÞ ¼ ½a1ð~xÞ; a2ð~xÞ � � � amð~xÞ�: ð32Þ
The coefficients a is chosen to minimize
J ¼
X

I

wð~x�~xIÞðzhð~x;~xIÞ � zð~xIÞÞ2 ¼ ðPa� zÞT Wð~xÞðPa� zÞ; ð33Þ
where wð~x�~xIÞ is the weighting function which is the same as that used in SPH,
zT ¼ ðz1; z2; . . . ; znÞ; ð34Þ

P ¼

p1ð~x1Þ p2ð~x1Þ � � � pmð~x1Þ
p1ð~x2Þ p2ð~x2Þ � � � pmð~x2Þ

..

. ..
. . .

. ..
.

p1ð~xnÞ p2ð~xnÞ � � � pmð~xnÞ

2
66664

3
77775 ð35Þ
and
Wð~xÞ ¼

wð~x�~x1Þ 0 � � � 0
0 wð~x�~x2Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � wð~x�~xnÞ

2
66664

3
77775; ð36Þ
n is the number of points. The extremum of J is given as
@J
@a
¼ Að~xÞað~xÞ � Bð~xÞẑ ¼ 0; ð37Þ
where
Að~xÞ ¼ PT Wð~xÞP; ð38Þ
Bð~xÞ ¼ PT Wð~xÞ: ð39Þ
Then a is given as
að~xÞ ¼ A�1ð~xÞBð~xÞẑ; ð40Þ
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here
ẑ ¼ ½zð~x1Þ; zð~x2Þ � � � zð~xnÞ�T : ð41Þ
The expression for zhð~xÞ is written as
zhð~xÞ ¼ Pð~xÞA�1ð~xÞBð~xÞẑ ¼ UTð~xÞẑ ð42Þ
in which Uð~xÞ is the shape function as below
UTð~xÞ ¼ ½u1;u2; . . . ;un� ¼ PTð~xÞA�1ð~xÞBð~xÞ: ð43Þ
The first derivative and second derivative of the shape function are respectively given as
UT
;i ¼ PT

;iA
�1Bþ PT A�1

;i Bþ PT A�1B;i; ð44Þ
UT
;ij ¼ PT

;ijA
�1Bþ PT

;iA
�1
;j Bþ PT

;iA
�1B;j þ PT

;jA
�1
;i Bþ PT A�1

;ij Bþ PT A�1
;i B;j þ PT

;jA
�1B;i þ PT A�1

;j B;i þ PT A�1B;ij: ð45Þ
Then the first derivative and second derivative of the surface function are given in the following:
zh
;i ¼ UT

;i ẑ; ð46Þ
zh
;ij ¼ UT

;ijẑ: ð47Þ
The derivatives of surface function will be used in the calculation of the normal vector and curvature of the boundary surface.
Fig. 4. Run time of the algorithm of 3D surface tension model vs. particle number (3D cube).

Fig. 3. Run time of the algorithm of 2D surface tension model vs. particle number (2D square).
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As mentioned above, the surface function is obtained by MLS. The surface function can be rewritten as
z ¼ f ðx; yÞ: ð48Þ
The boundary surface can be parametrized as
~rðx; yÞ ¼ hx; y; f ðx; yÞi: ð49Þ
2.2.3. Curvature and the normal vector of the interface in 3D
Based on the parametric surface~rðx; yÞ, the normal vector and curvature of the boundary surface can be calculated.
The unit normal vector is given as
~n ¼
~rx �~ry

j~rx �~ryj
¼ h�fx;�fy;1i �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

x þ f 2
y

q ; ð50Þ
where fx and fy are the derivative of surface function f(x,y) with respect to x and y, respectively. fx and fy can be obtained by
Eq. (46).
Fig. 5. Particle position of 2D circle with the normal vector on the surface (with 125 boundary particles).

Fig. 6. The curvature of the reconstructed surface of 2D circle with radius of 1.
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Before computation of curvature of the boundary surface, the coefficients in the first fundamental form and second fun-
damental form of the boundary surface should be given. The first fundamental form of boundary surface is a quadratic form
I ¼ Edx2 þ 2Fdxdyþ Gdy2
: ð51Þ
The coefficients can be obtained as follows:
E ¼~rx �~rx ¼ 1þ f 2
x ; ð52Þ

F ¼~rx �~ry ¼ fxfy; ð53Þ
G ¼~ry �~ry ¼ 1þ f 2

y : ð54Þ
Fig. 7. The normal vector on the surface of 3D sphere (with 1220 boundary particles).

Fig. 8. The curvature of the reconstructed surface of 3D sphere with radius of 1.



Fig. 11. The frequency of drop with initial aspect ratio 1.1 in 3D vs. the coefficient of surface tension.

Fig. 10. The frequency of drop with initial aspect ratio 1.1 in 2D vs. the coefficient of surface tension.

Fig. 9. Maximum extension of a deformed drop along x and y axes.
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Fig. 12. The snapshot of oscillation of 2D liquid drop with initial shape of square.
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The second fundamental form of boundary surface is
II ¼ Ldx2 þ 2Mdxdyþ Ndy2
: ð55Þ
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The coefficients can be calculated as below
L ¼~rxx �~n ¼
fxxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2
x þ f 2

y

q ; ð56Þ

M ¼~rxy �~n ¼
fxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2
x þ f 2

y

q ; ð57Þ

N ¼~ryy �~n ¼
fyyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 2
x þ f 2

y

q : ð58Þ
Then the mean curvature of boundary surface can be given as
H ¼ 1
2
� ðj1 þ j2Þ ¼

EN � 2FM þ GL

2ðEG� F2Þ
¼
ð1þ f 2

x Þfyy � 2f xfyfxy þ ð1þ f 2
y Þfxx

2ð1þ f 2
x þ f 2

y Þ
3=2 ;
where fxx, fxy, fyy are the second derivative of surface function f(x,y) and can be calculated by Eq. (47).
The unit normal vector and curvature can be obtained by Eqs. (50) and (59), respectively. Then surface tension force can

be calculated by Eq. (7).
3. Results and discussion

To approve the ability of the current method in the simulation of free surface problem in vacuum, numerical examples in
2D and 3D are given in the following. The current method is robust and efficient to handle the interfacial problem with sur-
face tension in vacuum. To make sure that the SPH particles have homogeneous distribution, XSPH is used in the simulation
[24]. The summation density is normalized on the boundary. If not specified otherwise, the parameters used in the calcula-
tion in both 2D and 3D are taken as follows. The SPH particles of equal mass have the uniform initial inter-particle distance of
x

y

0 0.003 0.006 0.009 0.012
0

0.003

0.006

0.009

0.012

t=0.0004

x

y

0 0.003 0.006 0.009 0.012
0

0.003

0.006

0.009

0.012

t=0.0011

x

y

0 0.003 0.006 0.009 0.012
0

0.003

0.006

0.009

0.012

t=0.002

x

y

0 0.003 0.006 0.009 0.012
0

0.003

0.006

0.009

0.012

t=0.003

Fig. 13. Velocity field for oscillation of 2D liquid drop with initial shape of square.
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0.25 � 10�3. The constant smoothing length is equal to the initial inter-particle distance. The reference density is taken as
1000. The cubic spline kernel is used as the smoothing function in the calculation. The predictor–corrector scheme is used
in the time integration. And the time step is controlled by CFL condition Dt 6 0:25 h

c

� �
, the viscous-diffusion condition

Dt 6 0:25 h2

m

� �
and surface tension condition Dt 6 0:25 qh3

2pr

� �1=2
	 


[19].

3.1. Efficiency and accuracy

As stated in Refs. [21,22], the complexity of the algorithms for the boundary particle detection in 2D and in 3D are NNa-

logNa and NN2
a , respectively, where N is the total number of particles and Na is the average number of the neighbors per par-

ticle. The computation for the reconstruction of interface is also linear with the total number of particles. 2D square test and
3D cube test are used in 2D and 3D, respectively. During the tests, the number of neighbors per particle is approximate the
same and the total number of particles increase. Figs. 3 and 4 prove that the run time of the current algorithms for surface
tension is linear with the total number of particles in both 2D and 3D. The current algorithm has higher efficiency.

The accurate computations of normal vector and curvature of the interface are the most important issues in the compu-
tation of surface tension force. To validate the current method for surface tension, the computations of normal vector and
curvature of the interface on circle and sphere are studied. Fig. 5 gives the calculated normal vector on the surface of the
circle. Fig. 6 gives the curvature of the circle with radius of 1. In theory, the curvature of the circle is inverse of the radius
of the circle. Fig. 6 shows that the calculated curvature converges to 1 by increasing the number of the boundary particles.
The maximum relative error for the 62, 125, and 251 boundary particles are 2.6 � 10�3, 6.3 � 10�4, and 1.6 � 10�4, respec-
tively. Fig. 7 gives the normal vector on the surface of the sphere. Fig. 8 gives the curvature of the sphere with radius of 1. The
curvature of sphere is the inverse of the radius of the sphere. Fig. 8 shows that the calculated curvature converges to theo-
retic value 1 by increasing the number of the boundary particles. The maximum relative error for the 1220, 4927, and 19,932
boundary particles are 0.0296, 0.0142, and 0.00697, respectively. The accurate normal vector and curvature can be obtained
by the current method.

To further validate the current method, the oscillations of drop are numerically investigated. The density of the drop is
1000 and the viscosity is set to 0.001. The initial aspect ratio of the deformed drop is 1.1. Fig. 9 shows the maximum exten-
sion of a deformed drop along x and y axes. The coefficient of surface tension is 2.5. 798, 3224, and 12,878 particles are used
in the simulation. In the classical work by Rayleigh [27], the normal-mode frequencies for an oscillating drop are given by
Fig. 14. 2D head-on binary collision with the relative velocity 1.0. The time is shown in each panel.
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x2
n ¼ nðn� 1Þðnþ 2Þ r

qR3 ;
where n = 2,3, . . ., stands for the mode number. The normal-mode frequencies for 2D oscillating drops are [27]
x2
n ¼ nðn2 � 1Þ r

qR3 : ð61Þ
Fig. 16. The volume of the coalesced drop vs. time during the 2D head-on binary collision.
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Fig. 10 shows that the frequency of drop with initial aspect ratio 1.1 in 2D as a function of the coefficient of surface tension.

According to the Eq. (61) with n = 2, the theoretical value for the normal-mode frequency in 2D is
ffiffiffiffiffiffi
6r
qR3

q
. The maximum rel-

ative errors for 798 and 3224 particles are 0.021 and 0.0043, respectively. The numerical results demonstrate convergence of
the current method. Fig. 11 shows that the frequency of drop with initial aspect ratio 1.1 in 3D as a function of the coefficient

of surface tension. From the Eq. (60) with n = 2, the theoretical value for the normal-mode frequency in 3D is
ffiffiffiffiffiffi
8r
qR3

q
. Ten thou-

sand six hundred and ninety four particles are used in the simulation. The maximum relative error is 0.011. The numerical
results in both 2D and 3D agree well with theory.
3.2. Numerical examples in 2D

3.2.1. Oscillation of 2D square liquid drop
Deformation of 2D liquid drop from initial shape of square to a circle is simulated. The side length of the square is

7.5 � 10�3 and 900 SPH particles are used in the simulation. The coefficient of surface tension is set to 2.5. The viscosity
of the liquid is 1.0 � 10�6.

Fig. 12 shows the snapshots of oscillation of 2D liquid drop with initial shape of square in sequence. Fig. 13 shows the
velocity field of oscillation of 2D liquid drop. Due to surface tension force on the interface, the SPH particles at the corner
Fig. 17. 2D off-center binary collision with the relative velocity 1.0. The time is shown in each panel.
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have velocities towards the center of the liquid square at the beginning. Since surface tension force is proportional to the
curvature of the interface, the velocities are larger around the corners as shown at t = 0.0004 in Fig. 13. At t = 0.0011, the
shape of 2D liquid drop is similar to a circle. However, 2D liquid drop is not at equilibrium. The SPH particles at the interface
near the x axis and y axis have large velocities with outward direction. It results in the shape of the diamond at t = 0.0012.
During the oscillation of 2D liquid drop, the kinetic energy dissipates due to the liquid viscosity. The 2D liquid drop evolves
into the flower, non-equilibrium circle, diamond, round-corner square, final circle in equilibrium.

3.2.2. 2D head-on binary collision
2D head-on collision of two drops with equal size is simulated by using the current method. The relative velocity of two

drops is 1.0. The total number of SPH particles in the simulation is 1800. The coefficient of surface tension is set to 0.25. The
viscosity of the liquid is 0.1. The Reynolds number is 83 and the Weber number is 33.2.

Fig. 14 shows the evolution of head-on binary collision with the relative velocity 1.0 in the first period. As two drops
touch with each other, the liquid bridge forms between two drops. And the liquid bridge grows with time during the coa-
lescence of the two drop. The elongation along the x axis results from the high stagnation pressure in the enter region of
the coalesced drop. After the coalesced drop reaches its maximum deformation at t = 0.0022, the kinetic energy completely
converts into surface energy and the coalesced drop begins to contract along the x axis. And the shape of ‘peanut’ is
formed at t = 0.0028. The coalesced drop evolves into the non-equilibrium circle at t = 0.0042. The coalesced drop com-
pletes its first period of oscillation at t = 0.057 and the aspect ratio is 1.5 (less than its largest aspect ratio 2.33 at t
0.0022) at that time.

Fig. 15 shows the velocity field of 2D head-on binary collision at t = 0.005, 0.028, 0.042, and 0.057. As two drops touch
with each other, the velocity of the drop in the y direction reduces and the stagnation pressure at the center of the coalesced
drop increases. The high stagnation pressure results in the side movement of the coalesced drop along the x axis. The stag-
nation flow forms at the center of the coalesced drop as shown in Fig. 15 because of the internal counter-flow in the coa-
lesced drop. As there is no external force, the velocity field in the coalesced drop is symmetric. Fig. 16 shows that the
total volume of the coalesced drop keeps approximately constant.
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Fig. 18. Velocity field at t = 0.008, 0.015, 0.035, and 0.065 for the 2D off-center binary collision with relatively velocity 1.0. The maximum velocity is 0.436,
0.213, 0.167, and 0.0576 at t = 0.008, 0.015, 0.035, and 0.065, respectively.
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3.2.3. 2D off-center binary collision
2D off-center collision of two drops with equal size is simulated by using the current method. The relative velocity of two

drops is 1.0 and the impact parameter v (¼ X
D, X is the perpendicular component of the distance between two drops center

relative to the impact velocity, D is the drop diameter) is 0.5. The total number of SPH particles in the simulation is 1800. The
coefficient of surface tension is set to 0.25. The viscosity of the liquid is 0.1. The Reynolds number is 83 and the Weber num-
ber is 33.2.

Fig. 17 shows the evolution of 2D off-center binary collision. Similar with the evolution of head-on binary collision, the
liquid bridge forms at the contact point as two drops touch with each other. The liquid bridge grows with the mergence of
two drops. The stagnation pressure increases and results in the elongation of coalesced drop. The coalesced drop evolves into
the shapes of ‘peanut’, non-equilibrium circle, and final circle in equilibrium. One different feature of off-center collision
from head-on collision is that the point symmetric shape of the coalesced drop induces the rotational motion. It is similar
with the results from Melean and Sigalotti [12].

Fig. 18 shows the velocity field of 2D off-center binary collision at t = 0.008, 0.015, 0.035, and 0.065. The stagnation flow is
formed at the center of the coalesced drop as shown in Fig. 18. It results from the point symmetry motion. As shown at
Fig. 19. The snapshot of oscillation of cubic liquid drop.
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t = 0.035 in Fig. 18, the velocity field is point symmetry and the direction of the velocity is in the clockwise direction relative
to the center of coalesced drop. The clockwise distribution of velocity field induces the rotation of the drop.

3.3. Numerical examples in 3D

3.3.1. Oscillation of cubic liquid drop
Deformation of cubic liquid drop to a sphere is simulated. The side length of the cube is 6.25 � 10�3 and 15,625 (=253)

SPH particles are used in the simulation. The coefficient of surface tension is set to 2.5. The viscosity of the liquid is
1.0 � 10�6.

Fig. 19 shows the snapshot of oscillation of cubic liquid drop. Fig. 20 shows the magnitude of velocity at t = 0.0005, 0.001,
0.0015, and 0.004 for oscillation of cubic liquid drop. Due to surface tension force on the surface of cubic liquid drop, the
eight corners of cubic liquid drop deform first. The liquid drop evolves into dumbbell shape and has larger velocity at the
corners at t = 0.0005 as shown in Figs. 19 and 20. The eight round corners of liquid drop continue to contract and have a
shape of non-equilibrium sphere at t = 0.001 as shown in Figs. 19 and 20. The liquid drop becomes a drop with a shape of
the diamond at t = 0.0015. Due to the viscous dissipation, the liquid drop evolves into a sphere at equilibrium at t = 0.004.
During the oscillation, cubic liquid drop evolves into dumbbell, non-equilibrium sphere, diamond, sphere at equilibrium.

3.3.2. 3D head-on binary collision
3D head-on collision of two drops with equal size is simulated by using the current method. The relative velocity of two

drops is 1.0. The total number of SPH particles in the simulation is 16,000 (=2 � 203). The coefficient of surface tension is set
to 2.5. The viscosity of the liquid is 0.1. The Reynolds number is 74 and the Weber number is 2.96.

Fig. 21 shows head-on binary collision with the relative velocity 1.0. Fig. 22 shows magnitude of velocity for head-on bin-
ary collision with the relative velocity 1.0. As two liquid drops touch with each other, the liquid bridge forms between two
drops. The radius of liquid bridge increases as two drops coalesce. The kinetic energy of drop converts into the kinetic energy
Fig. 20. Magnitude of velocity at t = 0.0005, 0.001, 0.0015, and 0.004 for oscillation of cubic liquid drop. The maximum velocity is 1.22, 1.09, 0.71 and 0.054
at t = 0.0005, 0.001, 0.0015, and 0.004, respectively.
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of the liquid bridge. The stagnation region forms in the liquid bridge and high stagnation pressure results in the deformation
of the coalesced drop in the horizontal direction. The velocity of the drop in the horizontal direction increases with the for-
mation of the liquid bridge. The coalesced drop elongates along the horizontal direction and reaches its maximum deforma-
tion at t = 0.0058 as shown in Figs. 21 and 22. Then the contraction of the coalesced drop in the horizontal direction is
followed. The non-equilibrium sphere is formed at t = 0.0077 as shown in Figs. 21 and 22. The coalesced drop continues
to deform and elongate and contraction is followed at t = 0.0105 and 0.0128. Finally, the sphere at equilibrium is formed
at t = 0.016.

3.3.3. 3D off-center binary collision
3D off-center of two drops with equal size is simulated by using the current method. The relative velocity of two drops is

1.0 and the impact parameter v (=X
D, X is the perpendicular component of the distance between two drops center relative to

the impact velocity, D is the drop diameter) is 0.5. The total number of SPH particles in the simulation is 16,000 (=2 � 203).
The coefficient of surface tension is set to 2.5. The viscosity of liquid is 0.1. The Reynolds number is 74 and the Weber number
is 2.96.

Fig. 23 shows off-center binary collision with the relative velocity 1.0. As two liquid drops touch with each other, the
liquid bridge forms between two drops. The stagnation pressure increases with time and results in the elongation of the
coalesced drop. The peanut-shaped drop forms at t = 0.003. Similar with the 2D off-center binary collision, the coalesced
drop deforms and rotates. Due to the viscous dissipation, the coalesced drop evolves into a sphere at equilibrium.

Fig. 24 shows the magnitude of velocity for off-center binary collision with the relative velocity 1.0. The stagnation flow
forms in the center of coalesced drop and the internal motion in the drop is point symmetry. And the direction of the velocity
is in the clockwise direction relative to the center of the coalesced drop, as shown in Fig. 24. The clockwise distribution of
velocity field induces the rotation of the drop.
Fig. 21. 3D head-on binary collision with the relative velocity 1.0 (Re = 74, We = 2.96).



Fig. 22. Magnitude of velocity at t = 0.001, 0.004, 0.0058, 0.0077, 0.0105 and 0.0128 for 3D head-on binary collision with the relative velocity 1.0. The
maximum velocity is 1.67, 0.63, 0.16, 0.32, 0.058 and 0.14 at t = 0.001, 0.004, 0.0058, 0.0077, 0.0105 and 0.0128, respectively.

Fig. 23. 3D off-center binary collision with the relative velocity 1.0 (Re = 74, We = 2.96).
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Fig. 24. Magnitude of velocity at t = 0.0015, 0.0045, 0.0058, 0.007, 0.009 and 0.0115 for 3D off-center binary collision with the relative velocity 1.0. The
maximum velocity is 1.0, 0.65, 0.64, 0.34, 0.35 and 0.19 at t = 0.0015, 0.0045, 0.0058, 0.007, 0.009 and 0.0115, respectively.
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4. Conclusion

The current method has been applied to simulate free surface problem in vacuum. After detecting the boundary particles,
the interfacial is fitted locally by using Lagrangian interpolation polynomial in 2D and by using MSL in 3D, respectively. By
transforming the coordinate system, it is guaranteed that the reconstructed interface is one-valued in the local coordinate
system. Then surface tension force can be calculated by Eq. (7). In order to reduce the effects of the particle deficiency on
the boundary, the density is normalized on the boundary. XSPH is used to make the particle move in order. Based on the
developed method, benchmark tests are investigated numerically.

The current method works well in the benchmark tests. The 2D square liquid evolves into the flower, non-equilibrium
circle, diamond, round-corner square, final circle in equilibrium. The cubic liquid drop evolves into dumbbell, non-equilib-
rium sphere, diamond, sphere at equilibrium. The kinetic energy and surface energy convert into each other and the stag-
nation flow forms during the binary collision. The coalesced drop rotates during the oscillation of the off-center binary
collision.

Since the boundary is detected explicitly, surface tension force can be calculated directly on the boundary. It is physically
correct that surface tension force acts only on the boundary particle in the current model, since the surface tension force acts
on the sharp interface. Surface tension force is given explicitly in the current model. The current model has no relation with
the initial temperature and can be applied to the free surface problem with heat transfer. The numerical simulation shows
that the current method is successful to apply to the free surface problem in vacuum with low Reynolds number and low
Weber number. The stability of the current method has to be improved for higher Reynolds number and higher Weber num-
ber. In the current method, surface tension force is acted on the surface particle and works as a discontinuity on the surface.
It results in the instability in the numerical simulation. The smoothed version of the current method will be developed in the
future. And the current method will be applied to free surface problem with air.
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